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Abstract. For analytic functions the remainder terms of quadrature formulae can be represented as a
contour integral with a complex kernel. We study the kernel, on elliptic contours with foci at the points
∓1, for Gauss-Lobatto quadrature formula with multiple end points with Chebyshev weight function of
the third and the fourth kind. Starting from the explicit expression of the corresponding kernel, derived
by Gautschi and Li, we determine the locations on the ellipses where maximum modulus of the kernel
is attained. The obtained values confirm the corresponding conjectured values given by Gautschi and Li
in paper [The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules
with multiple end points, Journal of Computational and Applied Mathematics 33 (1990) 315-329.]

1. Introduction

In this paper, we analyze the remainder term of Gauss-Lobatto quadrature rule with the end points ∓1
of multiplicity r,∫ 1

−1
f (t)ω(t) dt =

r−1∑
ρ=0

κρ
L f (ρ)(−1) +

r−1∑
ρ=0

µρ
L f (ρ)(1) +

n∑
ν=1

λν
L f (τνL) + RL

n,r( f ), (1)

where τνL are zeros of πn(·;ωL), orthogonal polynomial on [−1, 1], with respect to the weight function

ωL(t) = (t2
− 1)rω(t).

Also, RL
n,r( f ) = 0 for all f ∈ P2n+2r−1 (the set of polynomial of degree ≤ 2n + 2r − 1).
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Let Γ be a simple closed curve in the complex plane surrounding the interval [−1, 1] and letD = intΓ be
its interior. If the integrand f is analytic in a domainD containing [−1, 1], then the remainder term RL

n,r( f )
admits the contour integral representation

RL
n,r( f ) =

1
2πi

∮
Γ

KL
n,r(z;ω) f (z)dz. (2)

The kernel is given by

KL
n,r(z;ω) ≡ Kn,r(z, ω) =

%L
n,r(z;ω)

(z2 − 1)rπn(z;ωL)
, z < [−1, 1],

where, if we denote (z2
− 1)rπn(z;ωL) = ωn,r(z;ω),

%L
n,r(z;ω) ≡ %n,r(z, ω) =

∫ 1

−1

ωn,r(z;ω)
z − t

ω(t)dt.

The integral representation (2) leads to the error bound

|RL
n,r( f )| ≤

`(Γ)
2π

(
max

z∈Γ
|Kn,r(z;ω)|

) (
max

z∈Γ
| f (z)|

)
,

where `(Γ) is the length of the contour Γ.
In this paper we take Γ = Eρ, where the ellipse Eρ is given by

Eρ =
{
z ∈ C | z =

1
2

(
u + u−1

)
, 0 ≤ θ ≤ 2π

}
, u = ρ eiθ. (3)

The upper bound of |RL
n,r( f )| reduces to

|RL
n,r( f )| ≤

`(Eρ)
2π

(
max
z∈Eρ
|Kn,r(z;ω)|

) (
max
z∈Eρ
| f (z)|

)
.

Furthermore, we take r = 2, meaning we are dealing with endpoints of multiplicity 2.
The goal is to determine the points where the kernel attains its maximum modulus along the contour of
integration.

When ρ −→ 1, the ellipse (1.3) shrinks to the interval [−1, 1], while with increasing ρ it becomes more
and more circle-like. The advantage of elliptical contours over circular ones is that such a choice requires
the analyticity of f in a smaller region of the complex plane, especially when ρ is near 1.

In [2] Gautschi considered Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points
with respect to the four Chebyshev weight functions

ω1(t) =
1

√

1 − t2
, ω2(t) =

√

1 − t2, ω3(t) =

√
1 + t
1 − t

, ω4(t) =

√
1 − t
1 + t

,

and derived explicit expressions of the corresponding kernels K(z;ω j), j = 1, 2, 3, 4, in terms of the variable
u = ρeiθ.

For Gauss-Radau quadratures with a fixed node at -1, Gautschi in [1] proved that the corresponding
kernel for Chebyshev weight functions ω = ω1 and ω = ω4 attains its maximum modulus on Eρ on the
negative real axis. Recently, Pejčev and Spalević [4] proved and confirmed the empirical results from [1] in
the case ω = ω3. Milovanović, Spalević and Pranić in [3] also proved and confirmed the empirical results
from [1] in the case ω = ω2.
For Gauss-Lobatto quadratures with multiple end points with Chebyshev weight function of the first kind it
is proved that |Kn,2(z;ω1)| attains its maximum on Eρ on the real axis (cf. [2, Theorem 4.1]). Forω2 numerical
and asymptotic results were presented.

For ω3 and ω4 Gautschi and Li in [2] presented the statement based on numerical and asymptotic results.
In this paper we prove the existence of the fixed value from the statement analytically and give strong
numerical evidence.
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2. Maximum of the Modulus of the Kernel for Gauss-Lobatto Quadrature with Multiple End Points

For ω = ω3 in the Gauss-Lobatto quadrature formula (1), there is a suggestion (cf. Gautschi and Li [2,
pg. 328]) that the maximum is always attained on the positive real axis.
Gautschi and Li [1, Eqs. (2.17) and (2.18)] derived the explicit representations of the kernels on Eρ,

Kn,2(z;ω3) =
2π

un+4

u + 1
u − 1

×
u3 + α(u2

− u) − β
β[un+4 − u−(n+4)] + α[un+3 − u−(n+3) − (un+2 − u−(n+2))] − [un+1 − u−(n+1)]

,

and Kn,2(z;ω4) = −Kn,2(−z;ω3),

where α =
n + 1
n + 3

, β =
(n + 1)(n + 2)
(n + 3)(n + 4)

, z = (u + u−1)/2 and u = ρeiθ.

We can determine the modulus of the kernel on Eρ. We are also interested in the modulus of the kernel at
θ = 0 because the corresponding Gautschi and Li’s statement claims that the modulus of the kernel attains
its maximum at θ = 0 for all ρ > 1. First, we consider Kn,2(z;ω3), and later, because of the simplicity reasons
and the symmetry, analogue results are presented for Kn,2(z;ω4).
By introducing some substitutions, we can easily express the modulus of the kernel in the following form

|Kn,2(z;ω3)| =

√
4π2

ρ2n+8

ac
bδ
,

where

a = |u + 1|2 = ρ2 + 2 cosθ · ρ + 1,

b = |u − 1|2 = ρ2
− 2 cosθ · ρ + 1,

c = |u3 + α(u2
− u) − β|2

= ρ6 + (2α cos θ
2 ) · ρ5 + (α2

− 2α cosθ) · ρ4

+ (−2α2 cos θ
2 − 2β cos 3θ

2 ) · ρ3

+ (α2
− 2αβ cosθ) · ρ2 + (2αβ cos θ

2 ) · ρ + β2

δ =
∣∣∣β[un+4

− u−(n+4)] + α[un+3
− u−(n+3)

− (un+2
− u−(n+2))] − [un+1

− u−(n+1)]
∣∣∣2

=
d

ρ2n+8 ,
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i. e.

d = δ · ρ2n+8 = |β[un+4
− u−(n+4)]

+ α[un+3
− u−(n+3)

− (un+2
− u−(n+2))] − [un+1

− u−(n+1)]|2 · ρ2n+8

= β2
· ρ4n+16 + (2αβ cosθ) · ρ4n+15 + (α2

− 2αβ cos 2θ) · ρ4n+14

+ (−2β cos 3θ − 2α2 cosθ) · ρ4n+13 + (α2
− 2α cos 2θ) · ρ4n+12

+ (2α cosθ) · ρ4n+11 + ρ4n+10 + (2β cos(2n + 5)θ) · ρ2n+11

+ (2αβ cos(2n + 6)θ + 2α cos(2n + 4)θ) · ρ2n+10

+ (2α2 cos(2n + 5)θ − 2αβ cos(2n + 7)θ − 2α cos(2n + 3)θ) · ρ2n+9

+ (−2β2 cos(2n + 8)θ − 2 cos(2n + 2)θ

− 2α2 cos(2n + 6)θ − 2α2 cos(2n + 4)θ) · ρ2n+8

+ (−2αβ cos(2n + 7)θ − 2α cos(2n + 3)θ + 2α2 cos(2n + 5)θ) · ρ2n+7

+ (2α cos(2n + 4)θ + 2αβ cos(2n + 6)θ) · ρ2n+6 + (2β cos(2n + 5)θ) · ρ2n+5

+ ρ6 + (2α cosθ) · ρ5 + (α2
− 2α cos 2θ) · ρ4 + (−2α2 cosθ − 2β cos 3θ) · ρ3

+ (α2
− 2αβ cos 2θ) · ρ2 + (2αβ cosθ) · ρ + β2.

In order to express d(ρ) as a polynomial function in ρ, the term δwas multiplied by ρ2n+8, which reduces
the expression for the square of the modulus of the kernel to

∣∣∣Kn,2(z;ω3)
∣∣∣2 = 4π2 ac

bd
.

By letting A,B,C,D denote the values of a, b, c, d for θ = 0, the square of the modulus of the kernel for θ = 0
can be expressed as

|Kn,2(z;ω3)|2 = 4π2 AC
BD

.

Our aim is to show that this is the maximum value of the modulus for all ρ > 1 and θ ∈ [0, 2π].
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The following substitutions are appropriate:

A = ρ2 + 2ρ + 1,

B = ρ2
− 2ρ + 1,

C = ρ6 + 2α · ρ5 + (α2
− 2α) · ρ4

+ (−2α2
− 2β) · ρ3 + (α2

− 2αβ) · ρ2 + 2αβ · ρ + β2,

D = β2
· ρ4n+16 + (2αβ) · ρ4n+15 + (α2

− 2αβ) · ρ4n+14 + (−2β − 2α2) · ρ4n+13

+ (α2
− 2α) · ρ4n+12 + (2α) · ρ4n+11 + ρ4n+10 + (2β) · ρ2n+11

+ (2αβ + 2α) · ρ2n+10 + (2α2
− 2αβ − 2α) · ρ2n+9 + (−2β2

− 2 − 4α2) · ρ2n+8

+ (−2αβ − 2α + 2α2) · ρ2n+7 + (2α + 2αβ) · ρ2n+6 + (2β) · ρ2n+5

+ ρ6 + (2α) · ρ5 + (α2
− 2α) · ρ4 + (−2α2

− 2β) · ρ3

+ (α2
− 2αβ) · ρ2 + (2αβ) · ρ + β2.

3. The Main Results

According to Gautschi and Li’s statement, the maximum modulus of the kernel is attended on the real
axis for all ρ > ρ∗(n) = 1. We formulate the following theorem, which states the existence of that value, and
provides an analytical proof. Whereas the suggestion that the result holds for all ρ from the interval (1,∞),
some cases are confirmed through a detailed numerical study.

Theorem 3.1. For the Gauss-Lobatto quadrature formula with multiple end points ∓1 (r = 2) with the Chebyshev
weight function of the third kind, there exist a value ρ∗(n) such that the modulus of the kernel

∣∣∣Kn,2(z;ω3)
∣∣∣ attains its

maximum value on the positive real semi axis (θ = 0) for each ρ > ρ∗(n), i.e.

max
z∈Eρ

∣∣∣Kn,2(z;ω3)
∣∣∣ =

∣∣∣∣∣Kn,2

(1
2

(ρ + ρ−1), ω3

)∣∣∣∣∣
for each ρ > ρ∗(n).

Proof. Referring to the previously introduced notation, we have to show that

ac
bd
≤

AC
BD

.

for each ρ greater than some ρ∗(n). We can simplify this inequality by denoting A1,B1,C1,D1 the differences
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a − A, b − B, c − C and d −D respectively, i.e.

A1 = 4 · (sin2 θ
2 ) · ρ,

B1 = −4 · (sin2 θ
2 ) · ρ,

C1 = 4 · [(−α sin2 θ
2 ) · ρ5 + (α sin2 θ) · ρ4 + (β sin2 3θ

2 + α2(sin2 θ
2 )) · ρ3

+ (αβ sin2 θ) · ρ2 + (−αβ sin2 θ
2 ) · ρ],

D1 = 4 · [(−αβ sin2 θ
2

) · ρ4n+15 + (αβ sin2 θ) · ρ4n+14

+ (β sin2 3θ
2 + α2 sin2 θ

2 ) · ρ4n+13 + (α sin2 θ) · ρ4n+12 + (−α sin2 θ
2 ) · ρ4n+11

+ (−β sin2 (2n+5)θ
2 ) · ρ2n+11 + (−αβ sin2 (2n+6)θ

2 − α sin2 (2n+4)θ
2 ) · ρ2n+10

+ (−α2 sin2 (2n+5)θ
2 + αβ sin2 (2n+7)θ

2 + α sin2 (2n+3)θ
2 ) · ρ2n+9

+ (β2 sin2 (2n+8)θ
2 + sin2 (2n+2)θ

2 + α2 sin2 (2n+6)θ
2 + α2 sin2 (2n+4)θ

2 ) · ρ2n+8

+ (αβ sin2 (2n+7)θ
2 + α sin2 (2n+3)θ

2 − α2 sin2 (2n+5)θ
2 ) · ρ2n+7

+ (−α sin2 (2n+4)θ
2 − αβ sin2 (2n+6)θ

2 ) · ρ2n+6 + (−β sin2 (2n+5)θ
2 ) · ρ2n+5

+ (−α sin2 θ
2 ) · ρ5 + (α sin2 θ) · ρ4 + (α2 sin2 θ

2 + β sin2 3θ
2 ) · ρ3

+ (αβ sin2 θ) · ρ2 + (−αβ sin2 θ
2 ) · ρ].

The previous inequality can be written as:

I = I(ρ) = [CD(A1B − AB1) + C1BD(A + A1) − AC(B + B1)D1] ≤ 0, (4)

for each ρ > ρ∗(n).
We can easily see that I is a polynomial in ρ of degree equal to 4n + 25, whose coefficients depend only

on θ, i.e.

I = I(ρ) =

4n+25∑
i=0

ai(θ)ρi. (5)

In order to show the existence of number ρ∗(n), we use the well– known fact that, starting from some value
of ρ, the sign of polynomial I(ρ) = ρ4n+25(a4n+25 + a4n+24

ρ + a4n+23
ρ2 + ...+ a0

ρ4n+25 ) coincides with the sign of its leading
coefficient. So, it is enough to analyze leading coefficient a4n+25 and to show its negativity.

Decomposing I(ρ) into sum: I(ρ) = x(ρ) + y(ρ) − z(ρ), and considering the highest order coefficients of
x(ρ), y(ρ) and z(ρ) we get respectively: β2(−8 sin2 θ

2 ), −4αβ2 sin2 θ
2 and (−4αβ sin2 θ

2 ). Putting them together
give

a4n+25 = −8β2 sin2 θ
2 − 4αβ2 sin2 θ

2 + 4αβ sin2 θ
2 = −4β sin2 θ

2 (2β + αβ − α),

where α =
n + 1
n + 3

and β =
(n + 1)(n + 2)
(n + 3)(n + 4)

= α ·
n + 2
n + 4

. Therefore,

a4n+25 < 0 iff 2β + αβ − α > 0 iff 2
n + 2
n + 4

+
(n + 1)(n + 2)
(n + 3)(n + 4)

− 1 > 0.
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The previous inequality reduces to n2 + 3n + 1 > 0 which is true for each n > 0, so negativity of the a4n+25 is
obvious.

Similar result holds for Kn,2(z;ω4) (= −Kn,2(−z;ω3)) .

Theorem 3.2. For the Gauss-Lobatto quadrature formula with multiple end points ±1 (r = 2) with the Chebyshev
weight function of the fourth kind, there exist a value ρ∗(n) such that the modulus of the kernel

∣∣∣Kn,2(z;ω4)
∣∣∣ attains

its maximum value on the negative real semi axis (θ = π) for each ρ > ρ∗(n), i.e.

max
z∈Eρ

∣∣∣Kn,2(z;ω4)
∣∣∣ =

∣∣∣∣∣Kn,2

(
−

1
2

(ρ + ρ−1), ω4

)∣∣∣∣∣
for each ρ > ρ∗(n).

3.1. Gautschi and Li’s statement
According to statement, the maximum is attended at θ = 0 for all ρ > 1. In order to ensure the non-

positivity of the polynomial I(ρ) given by (5) for each ρ > 1, we can write initial polynomial as a polynomial
in ρ − 1, and show the non-positivity of its new coefficients. We have

I(ρ) =
∑4n+25

i=0 bi(θ)(ρ − 1)i for all ρ > 1.

Numerical computations show that all functions bi(θ), i = 0, 1, . . . , 4n+25 are strictly under the x-axis for all
θ from the interval [0, 2π]. In general, the non-positivity of the coefficients bi(θ) is not necessary condition
for non-positivity of a polynomial for each ρ > 1, but in this case, it is obviously a sufficient condition.
Explicit formulae for coefficients bi(θ), i = 0, 1, . . . , 4n + 25, can be given in the terms of the coefficients ai(θ)
by using the binomial formula, but in MATLAB implementation it is more practical to use Horner scheme. The
new coefficients b0, b1, . . . , b4n+25 are complicated trigonometric functions of θ, inappropriate for analytical
considerations.

The method has been tested for all values of n from 1 to 100 and it gives the optimal results in all the
cases. Some of the cases are displayed in Figs. 1 and 2.
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Figure 1: The functions b0(θ), ..., b33(θ), in the case n = 2 (left) and the functions b0(θ), ..., b45(θ), in the case n = 5 (right).
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Figure 2: The functions b0(θ), ..., b97(θ), in the case n = 18 (left) and the functions b0(θ), ..., b425(θ), in the case n = 100
(right.)
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Numerical results also show that the graphs of polynomials I(n, ρ, θ) are strictly non-positive for each
n ∈N, ρ > 1 and θ ∈ [0, 2π]. Some of these cases are displayed in Figs. 3 and 4.
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Figure 3: The functions I(θ) in the case n = 1, ρ = 1.0001 (left) and in the case n = 13, ρ = 1.0001 (right).
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Figure 4: The functions I(θ) in the case n = 3, ρ = 1.2 (left) and in the case n = 15, ρ = 1.2 (right).
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